4-5 Zero-Force Members

Zero-Force Members

Under certain loading conditions some truss members carry no loads. Such members are called <u>Zero-Force Members</u>

Zero-Force Members:

Used to increase stability of the truss during construction

Provide support if the applied loading is changed

For the above truss which of the members support NO LOADING?

Joint A

Equilibrium Equations

$$\sum Fx = 0$$
 $F_{AF} = 0$

$$\sum Fy = 0$$
 $F_{AB} = 0$

Joint D

Equilibrium Equations

$$\sum Fx = 0$$
 -sin $\Theta F_{CD} = 0$
since sin $\Theta \neq 0$ (0< Θ <90)

Therefore,
$$F_{CD} = 0$$

$$\sum Fy = 0$$

$$-F_{DE} - \cos \Theta F_{CD} = 0$$

$$F_{DE} = 0$$

General Rule

Rule #1

If only two members form a truss joint and no external load or support reaction is applied to the joint, the members must be zero-force members.

Rule #2

If three members form a truss joint for which two of the members are <u>collinear</u>, the third member is a zero-force member provided no external force (load) or support reaction is applied to the joint.

Joint C

Equilibrium Equations

$$\sum Fx = 0$$
 $F_{AC} = 0$

Joint D

Equilibrium Equations

$$\sum Fx = 0$$
 -sin Θ F_{AD} = 0
since sin $\Theta \neq 0$ (0< Θ <90)

Therefore,
$$F_{AD} = 0$$

Using Rule #1 and Rule #2 identify on each of the truss diagrams shown the zero-force members.

FIGURE P4-11

FIGURE P4-12

FIGURE P4-13

FIGURE P4-14

FIGURE P4-15

FIGURE P4-17

FIGURE P4-25